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Abstract—This paper investigates low-latency adaptive stream-
ing codes for a three-node relay network. A source node transmits
a sequence of source packets (messages) to the destination
through a relay node. We focus on a particular case where the
link connecting the source and relay nodes is almost reliable,
but the link connecting the relay to the destination is not. The
relay node can observe the erasure pattern that has occurred in
the transmission between the source node and itself and adapt
its relaying strategy based on that observation. Every source
packet must be perfectly recovered by the destination with a
strict delay T , as long as the number of erasures in the relay-
to-destination link lies below some design parameter. We then
characterize capacity as a function of such design parameter. The
achievability scheme employs two different relaying strategies,
based on whether an erasure has or has not occurred in the
link from source to relay. The converse is proven by analyzing
a periodic erasure pattern and lower bounding the minimum
redundancy across channel packets. We show that the achiev-
able rate can be improved compared to non-adaptive schemes
previously proposed, indicating that exploiting the knowledge of
the erasure pattern by the relay node is essential in achieving
capacity.

I. INTRODUCTION

A number of emerging applications including online real-
time gaming, real-time video streaming (video conference
with multiple users) and healthcare (under the name tactile
internet) require efficient low-latency communication. In these
applications, data packets are generated at the source in a
sequential fashion and must be transmitted to the destination
under strict latency constraints. When packets are lost over the
network, significant amount of error propagation can occur and
suitable methods for error correction are necessary.

Traditionally, packet losses are handled either through auto-
matic repeat request (ARQ) or forward error correction (FEC).
For low-latency, long-distance communications, ARQ is not
viable due to the round-trip delay being possibly higher than
the delay constraint, thus FEC schemes are considered more
appropriate candidates. Traditional FEC codes, such as LDPC,
however, also introduce large latency due to large blocks,
and a new family of codes designed for this strict decoding-
delay constraints have been studied in the literature under
the name of streaming codes. Previous works have studied
particular, useful cases. In [1], the authors studied a point-to-
point (i.e., two nodes—source and destination) setting under
a maximal burst erasure pattern. In [2], the authors have
studied, separately, burst erasures and arbitrary erasures. In
[3], the authors have extended the erasure pattern, allowing
for both burst erasures and arbitrary erasures. In particular,

it was shown that random linear codes [4] are optimal if we
are concerned only with correcting arbitrary erasures. Other
works that have further studied various aspects of low-latency
streaming codes include [5]–[13].

Most of this prior work has focused on a point-to-point
communication link. However, many applications can be mod-
eled as a three-node relayed network, involving a relay node
between source and destination. This might occur, for example,
when two users communicate through a server, or when a user
communicates with a server through a nearby gateway that
connects the internet to an internal network where the server
is connected, e.g. in cloud applications. Motivated by such
considerations, streaming codes for such a setting were first
introduced in [14], extended to to a multi-hop network in [15]
and to an adaptive relay in [16].

In [14], the authors focus on time-invariant (or channel-
state-invariant) codes. In particular, the relay does not adapt
to the known erasure pattern that has occurred from source
to relay, thus the relay must always be prepared for the
worst-case scenario, even though it knows the worst-case has
not occurred. This was improved in [16], where an adaptive
scheme is presented and shown to improve upon the non-
adaptive capacity.

In this paper, we focus on a particular scenario where
the source-to-relay link is relatively reliable, with at most
one erasure happening in rare situations, while the relay-to-
destination link is unreliable. This setting is motivated by the
downlink in cloud applications, where the first link models an
internal and reliable network, and the second link models a
possibly unreliable internet connection, including a wireless
link. In this setting, we guarantee the recovery of the source
packet if and only if the number of erasures occurring in the
transmission window is limited by some design parameter η.
This is helpful in order to obtain outage probabilities under
a probabilistic model, and also allows us to capture worst-
case scenarios, which are of interest in low-latency streaming
applications [17].

For this setting, we propose an achievable scheme, which
although similar to [16], is shown to work under this more re-
strictive setting that does not allow for error propagation, while
the general scheme in [16] does not meet this requirement.
More importantly, we derive a tight upper bound, which relies
on a novel entropy property that lower bounds the necessary
redundancy across channel packets in a streaming setting—
something that, to the best of our knowledge, had not been
proven previously.
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II. PROBLEM STATEMENT

In this paper, we consider a network with one source, one
relay and one destination. The source wishes to transmit a
sequence of messages {st}∞t=0 to the destination, through the
relay, with a strict delay constraint T . That is, each message
st should be recovered by the destination by time t + T .
Furthermore, we assume there is no direct link between source
and destination. In this preliminary work, we assume the link
from source to relay, denoted “first link”, introduces at most
N1 = 1 erasure during any window of length T + 1, that
is, any source packet is subject to at most one erasure in the
first link from the time it has been generated up to the time
it should be recovered by the destination. For the link from
relay to destination, we do not assume a maximum number of
erasures, however, we guarantee recovery of a source packet
st if and only if at most η erasures happen from time t up to
t+ T . Note that this condition yields a stronger guarantee of
recovery, by reducing error propagation, compared to previous
models. That is, we are guaranteed to recover st under these
conditions even if we have been unable to recover some (or
any) st′ , t′ < t.

In the following, we present the formal definitions for the
problem. For simplicity, we define Fne = Fn ∪ {∗}.

Definition 1. An (n1, n2, k, T )F-streaming code consists of
the following:

• One sequence of source messages {st}t=∞t=0 , where st ∈
Fk.

• One encoding function ft : Fk × · · · × Fk︸ ︷︷ ︸
t+1 times

→ Fn1 each

used by the source node at time t to generate x
(1)
t =

ft(s0, s1, . . . , st).
• A relaying function gt : Fn1

e × · · ·Fn1
e︸ ︷︷ ︸

t+1 times

→ Fn2 used by the

relay at time t to generate x(2)t = gt(y
(1)
0 , y

(1)
1 , . . . , y

(1)
t ,

where y
(1)
t is the output of the channel from source to

relay at time t, defined in detail in the sequence.
• One function: ϕt+T = Fn2

e × · · · × Fn2
e︸ ︷︷ ︸

t+T+1 times

→ Fk used by

the destination at time t+T to generate an estimate ŝt =
ϕt+T,i(y

(2)
0 , y

(2)
1 , . . . , y

(2)
t+T ), where y(2)t is the output of

the channel from relay to destination at time t, defined
in detail in the sequence.

Definition 2. An erasure sequence is a binary sequence
denoted by e(`) , {e(`)t }∞t=0, ` = 1, 2, where e

(`)
t =

1{an erasure occurs at time t in link `}.

Definition 3. The mapping hn : Fn × {0, 1} → Fne of an

erasure channel is defined as hn(x, e) =

{
x, if e = 0

∗, if e = 1
.

For any erasure sequences e(1) and e(2) and any
(n1, n2, k, T )F-streaming code, the following input-output re-
lation holds for each t ∈ Z+: y(1)t = hn1

(x
(1)
t , e

(1)
t ), where

e(1) is such that
∑t+T
t′=t e

(1)
t′ ≤ 1 for any t. For the second link,

the following input-output relation holds for for each t ∈ Z+:
y
(2)
t = hn2

(x
(2)
t , e

(2)
t ). As mentioned previously, we make no

assumption about e(2) in the channel definition.

Remark 1. Note that, due to this channel definition, the
capacity under a traditional sense is zero, since it is possible
that all packets are erased in the second link and therefore
no information can be transmitted. Note that the same holds
for a probabilistic channel under strict delay constraint - it is
possible that all channel packets from transmission up to the
recovery deadline are erased and therefore it is impossible to
guarantee recovery under a probabilistic model.

Considering the remark above, we define a (T,N1, η)-
capacity1 in which we guarantee recovery of a source packet
st as long as the number of erasures in the second link from
time t up to t+ T is at most η, which is a design parameter.

Definition 4. In this work, an (n1, n2, k, T )F-streaming code
is said to be (T,N1, η)-achievable if the following holds:∑t+T
t′=t e

(1)
t′ ≤ N1 and

∑t+T
t′=t e

(2)
t′ ≤ η implies ŝt+T = st

for any st ∈ Fk.

Definition 5. The rate of an (n1, n2, k, T )F-streaming code is
R = k

max(n1,n2)
.

Definition 6. The (T,N1, η)-capacity, denoted by CT,N1,η

is the maximum rate achievable by (n1, n2, k, T )F-streaming
codes that are (T,N1, η)-achievable.

As mentioned earlier, in this paper, we focus on the case
N1 = 1, which models an almost reliable first link where
erasures rarely occur.

In the following sections, we present an example motivating
the use of channel-state-dependent codes, and then we present
an upper bound and a lower bound on the (T,N1, η)-capacity
and we show that they converge.

III. MOTIVATING EXAMPLE

As a demonstration of our scheme, let us consider the
scenario N1 = 1, η = 2 and T = 3 and compare the time-
invariant strategy presented in [14] to the proposed scheme in
this paper. For both schemes, we use a code of rate 1/2 in
the source to relay link. In order to make the demonstration
easier, we use k = 2 and n1 = 4 for both coding schemes.
The encoding strategy is presented in Table I. In the example,
st[a, b] denotes ath and bth symbols from the source packet
at time instant t. For example, s0[1, 2] denotes multiplexing
s0[1] and s0[2]. Intuitively, we can see that the code employed
in the first link should be the same to both schemes, as the
source node has no information about the channel state and
therefore must be prepared to handle the worst case in both
links.

1This notion is similar to that of an outage capacity, where we guarantee
recovery if the channel condition is better than some (designed) threshold.
However, in our case, the design parameter is the number of erasures that the
code must handle, instead of an error probability or a probabilistic channel
condition.
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TABLE I: Code employed from source to relay for correcting N1 = 1 erasures

t\symbol 0 1 2 3 4 5 6 7 8
x
(1)
t [1] s0[1, 2] s1[1, 2] s2[1, 2] s3[1, 2] s4[1, 2] s5[1, 2] s6[1, 2] s7[1, 2] s8[1, 2]

x
(1)
t [2] s0[1, 2] s1[1, 2] s2[1, 2] s3[1, 2] s4[1, 2] s5[1, 2] s6[1, 2] s7[1, 2]

Now, note that we are guaranteed to recover both source
symbols with a delay of at most 1, since we expect at most
one erasure in this window due to the reliability of the first
link. Using that information, the relaying scheme presented in
Table II is proposed in [14]. Note that the rate achieved by
this scheme is 1/3, and, indeed, it is guaranteed to recover
any source packet with a delay of at most T under any
η = 2 erasures. Note that the table contains only 3 rows for
simplicity, but each channel symbol contains the entropy of
two source symbols in this example, that is, we have n = 6.

However, let us assume x(1)0 has not been erased in the first
link. Then, this relaying scheme is inefficient, as we could
start transmitting information about s0 immediately. With that
in mind, consider that an erasure happens only at time t =
2. Then, we propose using the relaying strategy presented in
Table III. Note that, unlike the previous scheme, we only need
5 symbols in each channel packet, instead of 6. Therefore, we
are able to improve the rate from 2/6 to 2/5.

Finally, it should be noted that the destination must be made
aware whether an erasure has occurred or not, i.e., which
“type” of code is being transmitted at each timeslot. This can
be easily represented and transmitted with an overhead of at
most log2(T + 1) bits, by transmitting the erasure pattern in
the current window of length (T+1). If the size of each source
packet is large enough, this overhead is negligible.

IV. ACHIEVABILITY

In this section, we present a general encoding scheme that is
(T, 1, η)-achievable. For simplicity, we start by introducing a
scheme which assumes both the relay and the destination know
when the erasures have happened in the link from source to
relay. Note that the relay easily has access to this information2,
however, the destination must be informed of it by the relay.
Then, we upper bound the overhead required to inform the
destination and show that it does not scale with the length
of the code, therefore, by increasing k, n1 and n2, we are
able to make this overhead relatively as small as desired. The
encoding scheme is identical to the one in [16], however,
in the previous paper, the scheme assumes previous packets
have been recovered by the destination. In our model, such
assumption can not be made, as we are required to recover
packets even when previous packets might be lost. We show
that, for N1 = 1, this is not an issue and the destination can
recover without any knowledge about past packets.

Theorem 1. Assume the destination is given e(1), that is, the
erasure pattern that has occurred in the link from source to

2For example, the relay might have a timeout limit, and considers the packet
to be lost if it has not received it by that deadline.

relay. Then, there exists an (n1, n2, k, T )F-streaming code for
which the following holds:

k

n1
=

T − η
T + 1− η

(1)

k

n2
=

T + 1− η
T + 1 + 1

T−η
(2)

Proof: In order to prove this theorem, let us consider the
following encoding scheme from source to relay: we apply
(T +1− η) copies of systematic diagonally-interleaved MDS
codes with k′ = T −η and n′1 = T +1−η. Then, note that, if
x
(1)
t is not erased, st is available entirely at time t at the relay.

On the other hand, if x(1)t is erased, then the relay is able to
recover exactly (T + 1− η) symbols at each subsequent time
slot, that is, (T + 1− η) symbols of st are recovered at time
t+1, another (T +1− η) are recovered at time t+2, and so
on. This property is proven in [14, Lemma 3, p.10]. Further,
note that k = k′ · (T + 1− η) and n1 = n′1 · (T + 1− η).

Then, the relay employs a different relaying scheme, de-
pending on whether or not x(1)t has been erased. If x(1)t has
not been erased, we transmit st using (T − η) copies of MDS
block codes with k′′ = T + 1 − η and n′′2 = T + 1. Then,
in each time slot from t to t + T , there is a contribution of
(T−η) symbols from s(t), which can be information symbols
or parity symbols. An example can be found in Table III,
where, for example, x(1)3 has not been erased, thus we transmit
s3 using one copy of an MDS block code with k′′ = 2 and
n′′2 = 4.

On the other hand, if x(1)t has been erased, then we transmit
st using (T + 1 − η) copies of diagonally-interleaved MDS
codes with k′′′ = T − η and n′′′2 = T , starting at time st+1

and ending at time st+T . Recall that if x(1)t has been erased,
we recover (T + 1 − η) symbols at each time slot, which is
exactly the number of symbols required by the relay at each
time instant. After we have recovered all (T + 1− η)(T − η)
symbols, the relay is able to generate independent parities and
transmit them during the following η time instants. Thus, the
relay always has enough information to relay. An example of
such code can again be observed in Table III. In this example,
x
(1)
2 has been erased, thus we transmit s2 through two copies

of MDS block codes with k′′′ = 1 and n′′′2 = 3.
Now, note that any x(2)t is composed of at most (T +1−η)

symbols from st′ , where an erasure has occurred in the first
link at time t′ and t−T ≤ t′ < t, and other (T−η)(T ) symbols
from non-erased packets. Therefore, n2 ≤ T (T−η)+(T+1−
η). Due to the our definition of a relaying function, we then
zero-pad x(2)t in order to obtain n2 = T (T −η)+(T +1−η).

Finally, note that in both cases (erased or non-erased), we
have n′′ − k′′ = η and n′′′ − k′′′ = η, that is, the code
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TABLE II: Time-invariant relaying strategy for correcting η = 2 erasures in the link from relay to destination

t\symbol 0 1 2 3 4 5 6 7 8
x
(2)
t [1] s0[1, 2] s1[1, 2] s2[1, 2] s3[1, 2] s4[1, 2] s5[1, 2] s6[1, 2] s7[1, 2]

x
(2)
t [2] s0[1, 2] s1[1, 2] s2[1, 2] s3[1, 2] s4[1, 2] s5[1, 2] s6[1, 2]

x
(2)
t [3] s0[1, 2] s1[1, 2] s2[1, 2] s3[1, 2] s4[1, 2] s5[1, 2]

TABLE III: Channel-state-dependent relaying strategy for correcting η = 2 erasures in the link from relay to destination

t\symbol 0 1 2 3 4 5 6 7 8
x
(2)
t [1] s0[1] s1[1] s3[1] s4[1] s5[1] s6[1] s7[1] s8[1]

x
(2)
t [2] s0[2] s1[2] s2[1] s3[2] s4[1] s5[1] s6[1] s7[1]

x
(2)
t [3] s0[1] + s0[2] s1[1] + s1[2] s2[1] s3[1] + s3[2] s4[1] + s4[2] s5[1] + s5[2] s6[1] + s6[2]

x
(2)
t [4] s0[1] + 2s0[2] s1[1] + 2s1[2] s2[1] s3[1] + 2s3[2] s4[1] + 2s4[2] s5[1] + 2s5[2]

x
(2)
t [5] s2[2] s2[2] s2[2]

can correctly recover from any η erasures that happen from
time t up to t + T . Furthermore, since each source packet is
transmitted in independent block codes, as can be seen in the
previous example, failure to recover a past source packet does
not cause error in future packets.

Therefore, this is a (T, 1, η)-achievable code such that

k

n1
=

T − η
T + 1− η

(3)

k

n2
=

(T − η)(T + 1− η)
T (T − η) + (T + 1− η)

=
T + 1− η
T + T+1−η

T−η
(4)

which are exactly the desired rates.

Proposition 1. The overhead necessary to convey {e(1)t′ }
t+T
t′=t

from relay to destination is bounded by dlog|F|(T + 2)e.

Proof: Assume an erasure has happened in the first link at
time tε. At each time instant t, we use a naive scheme which
transmits the erasure pattern that has occurred from t − T

up to t in the first link, that is, x(2)t contains {e(1)t′ }tt′=t−T .
Therefore, the fact that tε has been erased is conveyed at times
tε, tε + 1, . . . , tε + T . If any of these channel packets have
been successfully recovered by the destination, it is aware that
the erasure has occurred at time tε, thus no other erasures
have happened in that window, from the model assumption.
Otherwise, all packets have been erased and it is impossible
to recover stε by the deadline. Finally, note that the binary
erasure sequence can easily be represented by dlog|F|(T +2)e
symbols, that is, representing an “1” in any of the (T + 1)
positions, or only zeros if no erasures have occurred.

V. CONVERSE

In order to present the upper bound, we start by presenting
the following entropy inequality.

Lemma 1. Let us denoteM = {1, . . . ,M} and assume there
exists a random variable s, and M random variables xm,m ∈
M, such that H(s|{xm}m∈K) = 0 holds for any K ⊂M such
that |K| = K. Then, the following inequality holds:

H({xm}m∈K, xi) ≤
∑
m∈K

H(xm) +H(xi)−
H(s)

K
(5)

for any i ∈M \ K.

Proof of Lemma 1: For simplicity, without loss of
generality, let us assume K = {1, 2, . . . ,K} and i = K + 1.
Further, let us define K+ = K∪{K+1}. Then, we can write

H({xm}K+1
m=1)

(a)
=H({xm}m∈K+\{i′})

+H(xi′ |{xm}m∈K+\{i′})

(b)
=H({xm}m∈K+\{i′}) +H(xi′ |{xm}m∈K′)

− I(xi′ ; {xm}m∈K+\{i′}|{xm}m∈K′)

(c)

≤
K+1∑
m=1

H(xm)

− I(xi′ ; {xm}m∈K+\{i′}|{xm}m∈K′)

(d)

≤
K+1∑
m=1

H(xm)− I(xi′ ; s|{xm}m∈K′) (6)

where, in (a), i′ ∈ K+; (b) comes from the rela-
tion between mutual information and conditional entropy
and the fact that I(xi′ ; {xm}m∈K+\({i′}∪K′)|{xm}m∈K′) =
I(xi′ ; {xm}m∈K+\{i′}|{xm}m∈K′); (c) comes from condi-
tioning can only reduce entropy; and (d) is due to the fact
that K+ \ {i′} is a subset of M with K elements, therefore,
H(s|{xm}m∈K+\{i′}) = 0. Note that this is true for any K′ ⊆
K+ \ {i′}. In particular, let us choose K′ = {1, 2, . . . , i′− 1},
and then let us write the following sum

K∑
i′=1

H({xm}K+1
m=1) ≤

K∑
i′=1

(
K+1∑
m=1

H(xm)

−I(xi′ ; s|{xm}i
′−1
m=1)

)
(a)
=K

K+1∑
m=1

H(xm)− I({xm}m∈K; s)

(b)
=K

K+1∑
m=1

H(xm)−H(s) (7)

where (a) comes from the chain rule of mutual information
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TABLE IV: Periodic Erasure Pattern

t t+ 1 · · · t+ η · · · t+ T t+ T + 1 t+ (T + 1) + 1 · · · t+ T + 1 + η · · · t+ z(T + 1)

and (b) comes from H(s|{xm}m∈K) = 0. Finally, we have

H({xm}K+1
m=1) ≤

K+1∑
m=1

H(xm)− H(s)

K

which is the desired expression.
Intuitively, this Lemma states that, if a source packet must

be recovered from any K packets, then there is a necessary,
unavoidable redundancy within K + 1 packets. We now use
this Lemma in order to prove the following Theorem which
upper bounds the (T, 1, η)-capacity.

Theorem 2. The (T, 1, η)-capacity is upper bounded by

CT,1,η ≤ min

(
T − η

T + 1− η
,
T + 1− η

T + 1 + 1
T−η

)
. (8)

Proof: Consider a periodic erasure pattern containing η
erasures in a burst with a period T+1, which can be visualized
in Table IV. Note that, under this erasure pattern, all source
packets must be recovered, since for any window [t, t + T ],
exactly η erasures have happened. Therefore, we can write the
following condition

H({st′}t+ηt′=t, {st′}
t+T+η+1
t′=t+η+1 · · · {st′}

t+η+(z+1)(T+1)
t′=t+η+1+z(T+1))

≤ H({x(2)t′ }
T
t′=η, · · · , {x

(2)
t′ }

T+(z+1)(T+1)
t′=η+(z+1)(T+1)). (9)

where z ∈ Z+. Now, note that, for any z, we have

H({x(2)t′ }
T+z(T+1)
t′=η+z(T+1)) ≤

T+z(T+1)∑
t′=η+z(T+1)

H(x
(2)
t′ )−

H(st+z(T+1))

T − η
(10)

due to the following: since there is an erasure at time
t + z(T + 1) in the source to relay link, x(2)t+z(T+1) can
not carry any information about st+z(T+1) due to causality.
Furthermore, instead of erasing x(2)t+z(T+1), we may erase any
other channel packet from relay to destination in that window,
and st+z(T+1) must still be recovered from the destination,
since only η erasures have occurred. Therefore, among the
(T + 1− η) packets from η+ z(T + 1) to T + z(T + 1), any
T − η packets must be sufficient to recover st+z(T+1). Then,
we apply Lemma 1.

Finally, recall that H(st) = k and H(x
(2)
t ) ≤ n2 and let z

go from 0 to Z. We then have

H
(
{st′}t+ηt′=t, · · · , {st′}

t+η+(z+1)(T+1)
t′=t+η+1+z(T+1),

· · · , {st′}t+η+(Z+1)(T+1)
t′=t+η+1+Z(T+1)

)
= (η + 1)k + (T + 1)(Z + 1)k (11)

and also

H({x(2)t′ }
T
t′=η, · · · , {x

(2)
t′ }

T+(Z+1)(T+1)
t′=η+(Z+1)(T+1))

≤ (Z + 2)(T + 1− η)n2 − (Z + 2)
k

T − η
. (12)

By making Z →∞, we have

(T + 1)k ≤ (T + 1− η)n2 −
k

T − η

=⇒ k

n2
≤ T + 1− η
T + 1 + 1

T−η
(13)

Finally, by using the same argument as in [14], we can also
show

k

n1
≤ T + 1−N1 − η

T + 1− η
. (14)

We do not present the full proof here, but the sketch is as
follows: since the source node is unaware of what erasures
have happened from relay to destination, it must be able to
always handle a burst of η erasures from time t+ T + 1− η
up to time t+ T . Therefore, packet st must be recoverable at
time t+T+1−η at the relay, otherwise, it is impossible for the
relay to transmit that information. Then, we bound k/n1 as a
point-to-point channel with effective delay constraint T+1−η
and N1 erasures. By applying N1 = 1, we achieve the desired
expression.

To finalize the proof, it suffices to note that

k

max(n1, n2)
= min

(
k

n1
,
k

n2

)
(15)

≤ min

(
T − η

T + 1− η
,
T + 1− η

T + 1 + 1
T−η

)
(16)

which completes the proof.

VI. CONCLUSION

The paper presents a tight (T,N1, η)-capacity result for
the three-node relayed streaming setting, for the particular
scenario where the first link is reliable and introduces rare
isolated packet erasures, modeled as at most N1 = 1 erasures
in the first link. Extending the results to an arbitrary N1 ≥ 1
is work in progress, and requires extending Lemma 1. We are
also working on thoroughly comparing the packet loss rates of
our proposed code against ones that allow for error propagation
in probabilistic settings, in order to evaluate the impact of this
model change.
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